STATEMENT OF BASIS Newfield Exploration Company SL 18447 Well No. 1 LPDES Permit No. LA0121801 AI No. 129073 For the Issuance of Territorial Subcategory of the Oil and Gas Extraction Point Source Category LPDES Water Discharge Permits. THE PERMITTEES ARE: Newfield Exploration Company - SL 18447 Well No. 1 involved with the exploration, development, and production of oil and gas within territorial subcategory locations of the State of Louisiana. ISSUING OFFICE: Louisiana Department of Environmental Quality (LDEO) Office of Environmental Services Post Office Box 4313 Baton Rouge, Louisiana 70821-4313 PREPARED BY: Gene Jarreau **DATE PREPARED:** November 4, 2005 #### 1. PERMIT STATUS A. Reason For Permit Action: First time issuance of a Louisiana Pollutant Discharge Elimination System (LPDES) permit for a 5-year term. B. NPDES permit effective date: N/A NPDES permit expiration date: N/A EPA has not retained enforcement authority. C. LPDES permit: LA0121801 LPDES permit effective date: N/A (Initial Permit) LPDES permit expiration date: N/A (Initial Permit) D. Date Application Received: May 26, 2005 #### 2. FACILITY INFORMATION A. FACILITY TYPE/ACTIVITY - Oil and Gas Exploration, Development, and Production Operations Newfield Exploration Company - SL 18447 Well No. 1 is an oil and gas exploration, development, and production facility. #### B. FEE RATE 1. Fee Rating Facility Type: minor - 2. Complexity Type: III, BPJ from 20 points to 10 points to be closer to the fee for coverage under the general permit, LAG260000 - 3. Wastewater Type: III - SIC Code: 1311 Newfield Exploration Company Draft Permit No. LA0121801 AI No. 129073 Page 2 of 5 C. LOCATIONS - SL 18447 Well No. 1, West Cameron Block 31 Area, approximately 14.7 miles south/southeast of Cameron, Cameron Parish Latitude: 29° 43' 10.5" Longitude: 93° 05' 25.5" #### 3. OUTFALL INFORMATION See Appendix A. #### 4. RECEIVING WATER Stream - Gulf of Mexico Basin and Subsegment - Mermentau River, 050901 Designated Uses - a. primary contact recreation b. secondary contact recreation c. fish and wildlife propagation d. oyster propagation #### 5. PROPOSED EFFLUENT LIMITS See Appendix A. #### 6. COMPLIANCE HISTORY/COMMENTS A file review disclosed that one action has been issued to Newfield Exploration Company – SL 18447 Well No. 1. The action is an Administrative Order (enforcement tracking no. WE-AO-05-0261) in reference to the commencement of drilling operations at this well, and discharging certain effluents. Prior to this Administrative Order, this facility did not have any authorization to discharge to waters of Louisiana. This company is presently ordered to protect water quality in the event of a discharge, and to comply with interim effluent limitation and monitoring requirements. One Administrative Order LPDES Permit Non-Compliance Report was received on 09/25/05. The incident occurred on 09/15/05 for 30 minutes, and was noted on 09/15/05. The incident noted was an unpermitted discharge of water-based mud and cuttings. The biannual Discharge Monitoring Reports (DMRs) for the monitoring period from 01/01/05 to 06/30/05 showed no discharge activity. ### Per the Permit Application The applicant had the following LA Department of Natural Resources violations and enforcement actions statewide for the past 3 years: Fine (civil penalty issued) – Effective 12/27/02 – Ended 03/13/03. #### 7. 303(d)/TMDL WATERBODIES Subsegment <u>050901</u>, <u>Mermentau River Basin – Coastal Bays and Gulf Waters to State Three-Mile Limit</u> is not listed on LDEQ's Final 2004 303(d) list as impaired. However, subsegment <u>050901</u> was previously listed as impaired for <u>mercury</u>, <u>organic enrichment/low dissolved oxygen</u>, <u>siltation/total</u> suspended solids/turbidity, turbidity, suspended solids, nutrients, carbofuran, and phosphorus, for which Newfield Exploration Company Draft Permit No. LA0121801 AI No. 129073 Page 3 of 5 the below TMDLs have been developed. The Department of Environmental Quality reserves the right to impose more stringent discharge limitations and/or additional restrictions in the future to maintain the water quality integrity and the designated uses of the receiving water bodies based upon additional TMDLs and/or water quality studies. The DEQ also reserves the right to modify or revoke and reissue this permit based upon any changes to established TMDLs for this discharge, or to accommodate for pollutant trading provisions in approved TMDL watersheds as necessary to achieve compliance with water quality standards. The following TMDLs have been established for subsegment 050901: # Big Constance Lake and Mermentau Coastal Bays and Gulf Waters DO and Nutrients – May 2, 2002 For organic enrichment/low DO and nutrients: no load given to point source discharger in TMDL, due to the lack of significant point sources. (For this facility, organic enrichment/low DO, nutrients, and phosphorus were not determined to be discharged at levels which would cause, have the reasonable potential to cause, or contribute to an excursion above any present state water quality standard.) ## TMDL for TSS, Turbidity, and Siltation for the Mermentau River Basin - May 2, 2002 For total suspended solids/turbidity/siltation: As per the TMDL, point source loads are so small as to be insignificant, and because effective policies are in place to limit TSS discharges, no specific reductions from point sources are required. (For this facility, total suspended solids/turbidity/siltation, suspended solids, and turbidity were not determined to be discharged at levels which would cause, have the reasonable potential to cause, or contribute to an excursion above any present state water quality standard.) # TMDL for the Pesticide Carbofuran in the Mermentau River and Vermilion-Teche River Basins – March 21, 2002 For carbofuran: There are no known point source discharges in the Mermentau River Basin. Therefore, no allocation was given to point sources. (For this facility, carbofuran was not determined to be discharged at levels which would cause, have the reasonable potential to cause, or contribute to an excursion above any present state water quality standard.) Mercury TMDLs for subsegments within Mermentau and Vermilion-Teche River Basins – April 5, 2001 The Mercury TMDL for Gulf Bays and Coastal Waters was finalized on July 8, 2005. As per the TMDL, elevated levels of mercury in fish tissue resulted in the issuance of fish consumption advisories for this subsegment. The TMDL attributes atmospheric deposition of mercury as the most significant source in Louisiana. Therefore, on a watershed scale point sources are expected to have a relatively minor effect on the overall mercury contribution. Some point sources however may represent significant site specific sources of mercury which could contribute to mercury bioaccumulation. Those facilities identified as having "reasonable potential" for exceeding narrative and/or numeric standards for protection of human health will be required to monitor mercury in their discharges. Because the discharge from this facility is a result of oil and gas exploration, development, and production operations LDEQ can not eliminate the discharge from this facility as not having reasonable potential for levels of mercury that may cause or contribute to an excursion above state water quality standards. In order to protect against the discharge of mercury at these levels, mercury monitoring Newfield Exploration Company Draft Permit No. LA0121801 Al No. 129073 Page 4 of 5 requirements are being placed in the permit. The permittee is required to utilize "ultra-clean" sample collection techniques and analytical Method 1631 to sample and analyze for mercury quarterly. This requirement applies to outfalls 001, 002, 005, 008, and 009. The results of these samples shall be submitted annually in a report to DEQ. After the first year of sampling, if all mercury data represented in the annual report is less than 15 ng/l, the permittee may discontinue this sampling requirement. The permittee is additionally required to submit a mercury minimization plan within one year from the effective date of the permit outlining steps taken or to be taken in effort to minimize the discharge of mercury from this facility. #### 8. ENDANGERED SPECIES The receiving waterbody, Subsegment 050901 of the Mermentau River Basin is not listed in Section II.2 of the Implementation Strategy as requiring consultation with the U.S. Fish and Wildlife Service (FWS). This strategy was submitted with a letter dated October 21, 2005 from Watson (FWS) to Gautreaux (LDEQ). Therefore, in accordance with the Memorandum of Understanding between the LDEQ and the FWS, no further informal (Section 7, Endangered Species Act) consultation is required. It was determined that the issuance of the LPDES permit is not likely to have an adverse effect on any endangered or candidate species or the critical habitat. The effluent limitations established in the permit ensure protection of aquatic life and maintenance of the receiving water as aquatic habitat. #### 9. HISTORIC SITES The LDEQ shall notify the LSHPO of the receipt of individual permit applications for proposed facilities when associated oil or gas related activities are to be planned on inland wetlands areas. #### 10. TENTATIVE DETERMINATION On the basis of preliminary staff review, the Department of Environmental Quality has made a tentative determination to issue a permit for discharges described in the proposed effluent attachment. #### 11. PUBLIC NOTICES Upon publication of the public notice, a public comment period shall begin on the date of publication and last for at least 30 days thereafter. During this period, any interested persons may submit written comments on the proposed issuance of LPDES individual permits and may request a public hearing to clarify issues involved. This Office's address is on the first page of the statement of basis. A request for a public hearing shall be in writing and shall state the nature of the issues proposed to be raised in the hearing. Public notice published in: The local newspaper of general circulation and The Office of Environmental Services Public Notice Mailing List. Newfield Exploration Company Draft Permit No. LA0121801 Al No. 129073 Page 5 of 5 ## Rationale for Newfield Exploration Company, SL 18447 Well No. 1 Outfall locations will vary from site to site. See Appendix A for pollutant type, limitations and monitoring frequencies. #### Limits Justification and References Limits are based upon 40 CFR 435 Subpart A - Territorial Subcategory, Final NPDES General Permit for the Territorial Waters of Louisiana (LAG260000), Louisiana Water Discharge Permit System individual permits, and Best Professional Judgment. ## Storm Water Pollution Prevention Plan (SWP3) Requirement In accordance with LAC 33:IX.2511.C.1.c, the operator must prepare and implement a Storm Water Pollution Prevention Plan (SWPPP) if there has been a release of reportable quantity of oil or hazardous substance in stormwater at the facility since November 16, 1987. Reportable Quantity spill is defined at 40 CFR 110.3 as discharges of oil that "Cause a film or sheen upon or discoloration of the surface of the water." The SWP3 shall be prepared, implemented, and maintained within six (6) months of the effective date of the final permit. The plan should identify potential sources of storm water pollution and ensure the implementation of practices to prevent and reduce pollutants in storm water discharges associated with industrial activity at the facility (see STORMWATER DISCHARGES in Part II of the Draft Permit) # EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS Discharges that are situated within the territorial subcategory of the Oil and Gas Extraction Point Source Category shall be limited and monitored by the permittee as specified below. Notification concerning intent to discharge must be submitted to this Office and the nearest Regional Office listed in Part II, Section R prior to commencement of drilling or workover operations or sanitary waste discharges from production operations. | Discharge Type | Effluent Characteristic | Discharge Limitations
Units (Specify) | Monitoring Req
Measurement | Sample | | |---|---|---|---|--|--| | Drill Cuttings and
Adhering Drilling
Fluids | NO DISCHARGE | | Frequency | Туре | | | Batch or Bulk Drilling
Fluids | NO DISCHARGE | | | | | | Treated Wastewater
from Drill Cuttings/
Drilling Fluids
Dewatering Operations | NO DISCHARGE | | | | | | Produced Sand | NO DISCHARGE | | | | | | Well Completion,
Treatment, and
Workover Fluids | Free Oil ²
Oil and Grease | No Discharge
42 mg/L daily max | 1/day
1/month | Grab
Grab | | | (Outfall 001) | Priority Pollutants ¹⁰
Flow | 29 mg/L mo avg
NO DISCHARGE
Report (GPD) | 1/month
1/month | Grab
Estimate | | | Produced Water
(Outfall 002) | Volume
Oil and Grease ¹¹ | Report (bbls/day) mo avg
42 mg/L daily max | 1/month | Estimate
Grab | | | | Thallium ¹² Benzene ¹² Lead ¹² Total Phenols ¹² Toxicity ¹² Radium 226 and 228 | 29 mg/L mo avg Footnote 12 Footnote 12 Footnote 12 Footnote 12 Footnote 12 Footnote 12 Report | 1/month Footnote 13 Footnote 13 Footnote 13 Footnote 13 Footnote 13 Footnote 13 | Grab
Grab
Grab
Grab
Grab
Grab
Grab | | | Sanitary Waste
(Outfall 003) | Floating Solids ³ BOD ₅ Total Residual Chlorine ¹⁵ TSS pH Flow | No Discharge 45 mg/L weekly avg 1 mg/L minimum 45 mg/L weekly avg 6.0 standard units minimum 9.0 standard units maximum Report (GPD) mo avg | 1/day
1/6 months
1/month
1/6 months
1/6 months | Observe
Grab
Grab
Grab
Grab | | | Domestic Waste ⁴ | Floating Solids ³ | No Discharge | 1/day | Observe | | | (Outfall 004) | and Visible Foam | _ | | | | | Source Water and
Source Sand
(Outfall 005) | Free Oil ¹
Flow | No Discharge '
Report (GPD) mo avg | 1/day
1/month | Observe
Estimate | | | Miscellaneous Discharges
of Chemically Treated
Seawater and Freshwater
(Outfall 006) | Volume
Treatment Chemicals
Free Oil ^{1, 17}
Toxicity | Report (bbls/day) mo avg
See Footnote 14
No Discharge
Footnote 16 | 1/month 1/day Footnote 16 | Estimate
Observe
Grab | | | | | to discount to | | | | These discharges include: excess seawater which permits the continuous operation of fire control and utility lift pumps, excess seawater from pressure maintenance and secondary recovery projects, water released during training of personnel in fire protection, seawater used to pressure test new piping and new pipelines, ballast water, non-contact cooling water, and desalinization unit discharge. ## EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued) | Deck Drainage
(Outfall 007) | Free Oil ¹
Flow | No Discharge
Report (GPD) mo avg | 1/day
1/month | Observe
Estimate | |---|--|---|--|--| | Hydrostatic Test
Water (Outfall 008) | Flow Total Suspended Solids ⁷ Total Organic Carbon ⁸ Oil and Grease Benzene ⁸ Total BTEX ^{8, 9} Lead ⁸ pH | Report (GPD) 90 mg/L net 50 mg/L daily maximum 15 mg/L daily maximum 50 µg/L daily maximum 250 µg/L daily maximum 50 µg/L daily maximum 6.0 standard units minimum 9.0 standard units maximum | 1/discharge
1/discharge
1/discharge
1/discharge
1/discharge
1/discharge
1/discharge
1/discharge | Estimate
Grab
Grab
Grab
Grab
Grab
Grab
Grab | | Miscellaneous Discharges
(Outfall 009) | Free Oil ^{1, 17} Flow Floating Solids ³ Visible Foam | No Discharge
Report (GPD) mo avg
No Discharge
No Discharge | 1/day
1/month
1/day
1/day | Observe
Estimate
Observe
Observe | Other Requirements from Part II A.: For Outfalls 001, 002, 005, 008, and 009, the permittee shall use "ultraclean" sample collection and Method 1631 analytical procedures to obtain a grab sample and analyze for Mercury once per quarter. While there are no Discharge Limits for Mercury being placed in the permit, the DMR requirement is to Report all Mercury data Annually. The permittee is additionally required to submit a mercury minimization plan within one year from the effective date of the permit, outlining steps taken (or to be taken) in effort to minimize the discharge of mercury from this facility. Miscellaneous Discharges include: Non-stormwater Discharges⁵; Boiler Blowdown; Desalinization Unit Blowdown; Diatomaceous Earth Filter Media; Mud, Cuttings and Cement at the Seafloor; Non-Contact Cooling Water; Blow-out Preventer Control Fluid; Uncontaminated Bilge Water; Uncontaminated Ballast Water; Uncontaminated Ambient Water; Uncontaminated Seawater and Excess Cement Slurry. Samples taken in compliance with the monitoring requirements specified in this permit shall be taken at a location, which is representative of the discharge prior to mixing with receiving waters. # EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued) In addition all discharges are subject to the following limitations: - A. There shall be no discharge of free oil or other materials, which would result in the formation of a visible sheen. There shall be no discharge of any oily sludge or of any materials, which would result in the formation of long-term bottom deposits of slime or sludge. There shall be no discharge of any substance which would result in the formation of distinctly visible floating solids, foam, or scum, in other than trace amounts. - B. There shall be no discharge of toxic materials in quantities such as to cause acute toxicity to aquatic organisms. - C. There shall be no discharge of halogenated phenol compounds. - D. The discharge of surfactants, dispersants, and detergents used to wash working areas shall be minimized except as necessary to comply with applicable State and Federal safety requirements. This restriction applies to tank cleaning and other operations which do not directly involve the safety of workers. - E. If requested, the permittee shall provide the Administrative Authority with a sample of any waste in a manner specified by the Agency. - F. Discharges of well completion, treatment and workover fluids shall be considered produced water for monitoring purposes when commingled with produced water. - G. Permittees wishing to increase mixing for produced water discharges may use a horizontal diffuser, multiple port discharges, or add seawater as described in Footnote 11 below. - H. The discharge of produced water is prohibited onto any intermittently exposed sediment surface within the boundaries of any state or Federal wildlife management area, refuge, or park or into any water body determined to be special ecological significance, within 1,300 feet of an active oyster lease, live natural oyster or other molluscan reef, designated oyster seed bed; or sea grass bed, or which facilitates the incorporation of significant quantities of hydrocarbons or radio nuclides into sediment or biota. Uncontaminated seawater, uncontaminated freshwater, source water and source sand, uncontaminated bilge water, and uncontaminated ballast water may be discharged from platforms that are on automatic purge systems without monitoring for free oil when the facilities are not manned. Additionally, discharges at the sea floor of: muds and cuttings prior to installation of the marine riser, cement, and blowout preventer fluid may be discharged without monitoring with the static sheen test when conditions make observation of a sheen on the surface of the receiving water impossible. ## EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued) #### Footnotes: - 1. No discharge of Free Oil as determined by the visual sheen method on the surface of the receiving water. Monitoring shall be performed once per day, during conditions when observation of a visual sheen on the surface of the receiving water is possible in the vicinity of the discharge and when the facility is manned. The number of days that a visual sheen is observed must be recorded. - 2. No discharge of Free Oil as determined by the static sheen test method once per day when discharging and the facility is manned. The number of days that a sheen is observed must be recorded. - 3. No discharge of Floating Solids as determined by observations made once per day, during daylight in the vicinity of sanitary waste outfalls, following either the morning or midday meal and at the time during maximum estimated discharge. - 4. No discharge of "garbage" including food wastes, incineration ash, and clinkers. Neither fish nor fish debris from cleaning stations nor graywater is considered garbage. - 5. The following non-stormwater discharges may be authorized by this permit provided the non-stormwater component of the discharge is in compliance with Part III, Section D.9 of this permit: discharges from fire fighting activities; fire hydrant flushings; potable water sources including waterline flushings; drinking fountain water, irrigation drainage; lawn watering; routine external building washdown that does not use detergents or other compounds; pavement washwaters where spills or leaks of toxic or hazardous materials have not occurred (unless all spilled material has been removed) and where detergents are not used; air conditioning condensate; compressor condensate; uncontaminated springs; uncontaminated ground water; and foundation or footing drains where flows are not contaminated with process materials such as solvents. - 6. Additives such as corrosion inhibitors, bactericides, and dyes may not be added to the test water without prior approval. Toxicity data for each additive must be submitted prior to approval. - 7. Background concentration of Total Suspended Solids (TSS) will be allowed in the discharge if the effluent is being returned to the same waterbody. In these cases, the permit limitations will be 90 mg/L plus the concentration of TSS in the intake water. The TSS concentration of the intake water shall be reported on the DMR along with the concentration of TSS in the effluent. - 8. Total Organic Carbon (TOC) shall be measured on discharges from pipes, pipelines, and/or tanks, which have previously been in service i.e., those which are not new. Benzene, Total BTEX, and Lead shall be measured on discharges from pipes, pipelines and/or tanks that have been used for the storage or transportation of liquid or gaseous petroleum hydrocarbons. Accordingly, Flow, TSS, Oil & Grease, and pH are the only limitations and testing requirements for new pipes pipelines, and/or tanks. - 9. BTEX shall be measured as the sum of benzene, ethyl benzene, toluene, and total xylene (including ortho-, meta-, and para-xylene) as quantified by EPA methods 602, 624, 1624, or most recently approved method. # EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued) 10. No discharge of priority pollutants except in trace amounts, unless authorized through a permitted outfall. Information on the specific chemical composition of any additives containing priority pollutants shall be recorded and shall be retained for a period of at least three years as required by Part III.C.3 of this permit. Note: If materials added downhole as well treatment, completion, or workover fluids contain no priority pollutants, the discharge is assumed not to contain priority pollutants except in trace amounts. Sampling and analysis of these parameters is not required. A list of priority pollutants is provided below. #### NONCONVENTIONAL Phenolics, Total Recoverable (4AAP) Chlorine (Total Residual) 3-Chlorophenol 4-Chlorophenol 2, 3-Dichlorophenol 2, 5-Dichlorophenol 2, 6-Dichlorophenol 3, 4-Dichlorophenol 2, 4, 5-TP (Silvex) 2, 4-D #### **METALS AND CYANIDE** Antimony (Total) Arsenic (Total) Beryllium (Total) Cadmium (Total) Chromium (Total) Chromium (3+) Chromium (6+) Copper (Total) Lead (Total) Mercury (Total) Molybdenum (Total) Nickel (Total) Freshwater Nickel (Total) Marine Selenium (Total) Silver (Total) Thallium (Total) Zinc (Total) Cyanide (Total) #### DIOXIN 2, 3, 7, 8-TCDD #### **VOLATILE COMPOUNDS** Acrolein Acrylonitrile Benzene Bromoform Carbon Tetrachloride Chlorobenzene Chlorodibromomethane Chloroethane ## EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued) ## VOLATILE COMPOUNDS continued 2-Chloroethylvinylether Chloroform Dichlorobromomethane 1. 1-Dichloroethane 1, 2-Dichloroethane 1, 1-Dichloroethylene 1, 2-Dichloropropane 1, 3-Dichloropropylene Ethylbenzene Methyl Bromide [Bromomethane] Methyl Chloride [Chloromethane] Methylene Chloride 1, 1, 2, 2-Tetrachloroethane Tetrachloroethylene Toluene 1, 2-trans-Dichloroethylene 1, 1, 1-Trichloroethane 1, 1, 2-Trichloroethane Trichloroethylene Vinyl Chloride ## ACID COMPOUNDS 2-Chlorophenol 2, 4-Dichlorophenol 2, 4-Dimethylphenol 4, 6-Dinitro-o-Cresol [2-Methyl-4, 6- Dinitrophenol] 2, 4-Dinitrophenol 2-Nitrophenol 4-Nitrophenol p-Chloro-m-Cresol [4-Chloro-3-Methylphenol] Pentachlorophenol Phenol 2, 4, 6-Trichlorophenol ### BASE/NEUTRAL COMPOUNDS Acenaphthene Acenaphthylene Anthracene Benzidine Benzo (a) anthracene Benzo (a) pyrene 3, 4-Benzofluoranthene Benzo (ghi) perylene Benzo (k) fluoranthene Bis (2-chloroethoxy) Methane Bis (2-chloroethyl) Ether Bis (2-chloroisopropyl) Ether Bis (2-ethylhexyl) Phthalate 4-Bromophenyl Phenyl Ether Butylbenzyl Phthalate 2-Chloronapthalene # EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued) ## BASE/NEUTRAL COMPOUNDS continued 4-Chlorophenyl Phenyl Ether Chrysene Dibenzo (a, h) anthracene 1, 2-Dichlorobenzene 1, 3-Dichlorobenzene 1, 4-Dichlorobenzene 3, 3'-Dichlorobenzidine Diethyl Phthalate Dimethyl Phthalate Di-n-Butyl Phthalate 2, 4-Dinitrotoluene 2, 6-Dinitrotoluene Di-n-octyl Phthalate 1, 2-Diphenylhydrazine Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachlorocyclopentadiene Hexachloroethane Indeno (1, 2, 3-cd) pyrene [2, 3-o-Phenylene Pyrene] Isophorone Naphthalene Nitrobenzene n-Nitrosodimethylamine n-Nitrosodi-n-Propylamine n-Nitrosodiphenylamine Phenanthrene Pyrene 1, 2, 4-Trichlorobenzene #### **PESTICIDES** Aldrin Alpha-BHC Beta-BHC Gamma-BHC [Lindane] Delta-BHC Chlordane 4, 4'-DDT 4, 4'-DDE [p,p-DDX] 4, 4'-DDD [p, p-TDE] Dieldrin Alpha-Endosulfan Beta-Endosulfan Endosulfan Sulfate Endrin Endrin Aldehyde Heptachlor Heptachlor Epoxide [BHC-Hexachlorocyclohexane] PCB-1242 PCB-1254 PCB-1221 # EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued) **PESTICIDES** continued PCB-1232 PCB-1248 PCB-1260 PCB-1016 Toxaphene 11. Samples shall be collected prior to the addition of any seawater to the produced water waste stream. #### 12. DISCHARGE LIMITATIONS 7-day Chronic Toxicity. Produced water discharges must show no observed effect for the survival endpoint portion of the test on a 7-day average minimum and monthly average minimum basis as measured by the 7-day chronic toxicity test. The 7-day average minimum and monthly average minimum No Observable Effect Concentration (NOEC) must be equal to or greater than the critical dilution concentration specified in Tables 1A - 1E below. The critical dilution shall be determined using Table 1 of this permit and is based on the discharge rate most recently reported on the Discharge Monitoring Report (DMR), discharge pipe diameter, and water depth between the discharge pipe and the seafloor, or between the surface and the seafloor if the discharge is made above the water's surface. Facilities, which have not previously reported produced water flow on the DMR, shall use the most recent monthly average flow for determining the critical dilution from Table 1 below. The monthly average minimum NOEC value is defined as the arithmetic average of all 7-day average NOEC values determined during the month. See Part II, Section M of this permit. Benzene, Lead, Phenol, and Thallium. The required limitations shall be calculated from the critical dilution obtained from Table 1, as follows: Benzene[†]: Daily Max. = $(220.8 \mu g/l / Critical Dilution) * 100$ Monthly Avg. = $(93 \mu g/l / Critical Dilution) * 100$ Lead[†]: Daily Max. = $(36.7 \mu g/l / Critical Dilution) * 100$ Monthly Avg. = $(15.5 \mu g/l / Critical Dilution) * 100$ Phenol[†]: Daily Max. = $(478 \mu g/l / Critical Dilution) * 100$ Monthly Avg. = (201 µg/l / Critical Dilution) * 100 Thallium[†]: Daily Max. = $(19.6 \mu g/l / Critical Dilution) * 100$ Monthly Avg. = $(8.3 \mu g/l / Critical Dilution) * 100$ † If any individual analytical test result is less than the minimum quantification level listed below, a value of zero (0) may be used for that individual result for DMR calculations and reporting requirements: Benzene - 10 μg/L Lead (Total) - 5 μg/L Total Phenol (4AAP Method) - 5 μg/L Thallium (Total) - 10 µg/L ## EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued) Methods to Increase Dilution for Compliance with Limits for Toxicity and Benzene, Lead, Thallium, and Phenol. Permittee wishing to increase mixing may use a horizontal diffuser, multiple port discharges, or add seawater as follows: Permittee using a horizontal diffuser shall install the diffuser designed using CORMIX2 version 4.2 GT or newer. Both the numeric water quality-based limits and the critical dilution for chronic toxicity testing shall be based on the modeled dilution for the diffuser. The following input parameters shall be used in modeling the critical dilution: Density Gradient = 0.182 sigma-t/m Ambient seawater density at diffuser depth = 1017 kg/m³ Produced water density = 1070 kg/m^3 Current speed = 10 cm/sec. When the water at the discharge site is of sufficient depth that the plume does not impinge the bottom, the Brooks equation shall be applied to the CORMIX2 results as follows: - 1. Calculate the near field dilution factor (S) at the end of the impingement region, collapsed plume width (H), and downstream distance where the impingement region ends (x) using the CORMIX2 model. - 2. Using the input conditions cited above and calculated factors from Step 1, above; calculate the far field dilution factor, C_i/C, using the Brooks equation: $$\frac{C_{i}}{C} = \left\{ erf \left[\left(\frac{1.5}{\left(1 + 8AH^{\frac{4}{3}} \frac{t}{H^{2}} \right)^{3} - 1} \right)^{\frac{1}{2}} \right] \right\}^{-1}$$ where: C_i = concentration at end of impingement C = concentration at edge of 100 m mixing zone H = collapsed plume width, in meters A = 4/3 power law dispersion parameter = 0.000453 m^{2/3}/sec t = travel time from end of impingement to 100 m = (100 m - x)/u u = current speed x = downstream distance where impingement region ends (from step 1, above) erf = the error function 3. The total dilution at the 100 m mixing zone is defined as the product of the near-field dilution factor, S, found in Step 1 and the far-field dilution factor, C_i/C, calculated in Step 2. # EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued) Permittee shall state the calculated critical dilution corresponding to that diffuser on the annual Discharge Monitoring Report (DMR) with a certification that the diffuser is installed. The CORMIX2 model runs shall be retained by the permittee as part of its LPDES records. Permittee using vertically aligned multiple discharge ports shall provide vertical separation between ports (See Table 2 - Minimum Vertical Port Separation Distance to Avoid Interference). When multiple discharge ports are installed, the depth difference between the discharge port closest to the sea floor and the sea floor shall be the depth difference used to determine the critical dilution from Table 1 of this permit. The critical dilution value shall be based on the port flow rate (total flow rate divided by the number of discharge ports) and based on the diameter of the discharge port (or smallest discharge port if they are of different styles). When seawater is added to the produced water waste stream prior to discharge, the total produced water flow, including the added seawater, shall be used in determining the critical dilution. (See Tables 1A - 1E). ## 13. MONITORING FREQUENCY <u>Toxicity</u>. The required frequency of toxicity testing shall be determined from using the critical dilutions obtained from Table 1 based on the water depth, discharge rate, and pipe diameter, as follows: | Toxicity Limit (Critical Dilution) | Monitoring Frequency [‡] | |------------------------------------|-----------------------------------| | < 1% | 1 per year | | ≥ 1 and < 2.25% | 1 per quarter | | ≥ 2.25 % | 1 per month | Benzene, Lead, Phenol, and Thallium. The required monitoring frequency shall be determined from the limits calculated from Footnote 12 as follows: | <u>Parameter</u> | Monthly Avg. Limit (μg/l) | Monitoring Frequency [‡] | |------------------|---|---| | Thallium | > 1,044
≤ 1,044 and > 490
≤ 490 | 1 per quarter
1 per month
1 per 2 weeks | | Benzene | > 12,600
\le 12,600 and > 5,900
\le 5,900 | 1 per quarter
1 per month
1 per 2 weeks | | Lead | > 65,000
≤ 65,000 and > 30,600
≤ 30,600 | 1 per quarter
1 per month
1 per 2 weeks | | Total Phenol | > 26,400
≤ 26,400 and > 12,400
≤ 12,400 | 1 per quarter
1 per month
1 per 2 weeks | # EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued) Radioactivity. Produced water shall be monitored for Radium 226 and Radium 228. The required monitoring frequency shall be determined using the critical dilutions obtained from Table 1 based on the water depth, discharge rate, and pipe diameter as also required for the toxicity limits as follows: | Critical Dilution | Monitoring Frequency [‡] | |-------------------------|-----------------------------------| | < 1% | 1 per year | | ≥ 1 and $< 2.25\%$ | 1 per quarter | | ≥ 2.25 % | 1 per month | ‡ Samples of these parameters shall be collected after addition of any substances, including seawater that is added prior to discharge. Samples for monitoring produced water toxicity shall be representative of produced water discharges when scale inhibitors, corrosion inhibitors, biocides, paraffin inhibitors, well completion fluids, work over fluids, and/or well treatment fluids are used in operations. For permittee required to monitor once per quarter or once per month as stated above for benzene, lead, total phenol or thallium, the monitoring frequency shall increase to once per two weeks for any of these parameters when the discharge has been found to exceed a limit for that parameter. For permittee required to monitor once per year or once per quarter as stated above for toxicity, the monitoring frequency shall increase to once per month when the discharge has been found to exceed limits for toxicity. When the permittee has monitored radioactivity for one continuous year the required monitoring frequency shall be reduced to once per year. If permittee has been compliant for one full year (12 consecutive months) the required testing and monitoring frequencies shall be reduced for the following limits as follows: benzene, lead, total phenol or thallium, to once per quarter for the parameter(s) in compliance as long as the discharge remains in compliance and toxicity, to once per year and radioactivity, to once per year. If the operator adds a diffuser, multiple discharge ports, or seawater to increase dilution to ensure compliance with the limits as described above, the operator may decrease the monitoring frequency to once per quarter for benzene, lead, total phenol or thallium, and once per year for toxicity after they have taken the action to increase dilution and have demonstrated compliance with the limits for three consecutive months. - 14. The concentration of treatment chemicals in the discharge shall not exceed the most stringent of the following three constraints: 1) the maximum concentrations and any other conditions specified in the EPA product registration labeling if the chemical is an EPA registered product; 2) the maximum manufacturer's recommended concentration; and 3) 500 mg/L. - 15. Total Residual Chlorine limitation shall be a minimum of 1 mg/L and maintained as close to this concentration as possible. If chlorination is not chosen as a disinfection method, the discharge must meet a fecal coliform limitation of 43 colonies/100 mL weekly average. If chlorination is chosen as a disinfection method, see Part II, Section F. # EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued) 16. The 48-hour minimum and monthly average minimum No Observervable Effect Concentration (NOEC) must be equal to or greater than the critical dilution concentration specified in Table 3 below. Critical dilution shall be determined and is based on the discharge rate, discharge pipe diameter and water depth between the discharge pipe and the bottom. The monthly average minimum NOEC value is defined as the arithmetic average of all 48-hour average NOEC values determined during month. The required frequency of testing for continuous discharges shall be determined as follows: | Discharge Rate | Toxicity Testing Frequency | |-------------------------|----------------------------| | 0 - 499 bbl/day | 1/year | | 500 - 4,599 bbl/day | 1/quarter | | 4,600 bbl/day and above | 1/month | Intermittent or batch discharges shall be monitored once per discharge but are required to be monitored no more frequently than the corresponding frequencies shown above for continuous discharges. Samples shall be collected after addition of any added substances including seawater that is added prior to discharge and before the flow is split for multiple discharge ports. Samples also shall be representative of the discharge. Methods to increase dilution previously described for produced water in Footnote 12, also apply to seawater and freshwater discharges which have been chemically treated. If the permittee has been compliant with the toxicity limit for one full year (12 consecutive months) for a continuous discharge of chemically treated seawater or freshwater, the required testing frequency shall be reduced to once per year for that discharge. 17. Discharges are limited to those times that a visual sheen observation is possible unless the operator uses the static sheen method. # EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (continued) # **TABLE 1: Produced Water Critical Dilutions** TABLE 1A: Critical Dilution (Percent Effluent) Depth Difference between the Discharge Pipe and the Sea Floor 2 Meters and Less | D: 1 D : | | | Pipe Diam | eter (inches) | | | |-----------------------------|--------------|--------------|--------------|---------------|----------------|-------| | Discharge Rate
(bbl/day) | > 0" to < 5" | ≥ 5" to < 7" | ≥ 7" to < 9" | ≥ 9" to < 11" | ≥ 11" to < 15" | ≥ 15" | | ≤ 500 | 0.26 | 0.26 | 0.26 | 0.11 | 0.1 | 0.09 | | 501 to 1,000 | 0.66 | 0.66 | 0.66 | 0.66 | 0.66 | 0.66 | | 1,001 to 2,000 | 1.44 | 1.44 | 1.44 | 1.44 | 1.44 | 1.44 | | 2,001 to 3,000 | 2.63 | 2.2 | 2.2 | 2.2 | 2.2 | 2.2 | | 3,001 to 4,000 | 4.2 | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 | | 4,001 to 5,000 | 5.6 | 3.6 | 3.6 | 3.6 | 3.6 | 3.6 | | 5,001 to 7,500 | 7.6 | 6.4 | 5.3 | 5.3 | 5.3 | 5.3 | | 7,501 to 10,000 | 8.8 | 9.4 | 6.8 | 6.8 | 6.8 | 6.8 | | 10,001 to 15,000 | 10.5 | 12.25 | 10.8 | 9.1 | 9.1 | 9.1 | | 15,001 to 20,000 | 11.5 | 13.6 | 14.8 | 10.9 | 10.9 | 10.1 | | 20,001 to 35,000 | 13.0 | 15.6 | 17.4 | 18.7 | 15.4 | 14.4 | | 35,001 to 50,000 | 13.7 | 16.5 | 18.5 | 20.0 | 21.1 | 16.6 | | 50,001 to 75,000 | 16.7 | 17.3 | 19.5 | 21.0 | 22.25 | 19.0 | TABLE 1B: Critical Dilution (Percent Effluent) Depth Difference between the Discharge Pipe and the Sea Floor Greater than 2 Meters to 4 Meters | | | Pipe Diameter (inches) | | | | | |-----------------------------|--------------|------------------------|--------------|---------------|----------------|-------| | Discharge Rate
(bbl/day) | > 0" to < 5" | ≥ 5" to < 7" | ≥ 7" to < 9" | ≥ 9" to < 11" | ≥ 11" to < 15" | ≥ 15" | | ≤ 500 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | 501 to 1,000 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | | 1,001 to 2,000 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | | 2,001 to 3,000 | 0.74 | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 | | 3,001 to 4,000 | 1.1 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | | 4,001 to 5,000 | 1.55 | 1.05 | 1.05 | 1.05 | 1.05 | 1.05 | | 5,001 to 7,500 | 3.0 | 1.74 | 1.5 | 1.5 | 1.5 | 1.5 | | 7,501 to 10,000 | 4.6 | 2.6 | 2.0 | 2.0 | 2.0 | 2.0 | | 10,001 to 15,000 | 5.8 | 4.9 | 3.2 | 2.8 | 2.8 | 2.8 | | 15,001 to 20,000 | 6.2 | 7.6 | 5.0 | 3.6 | 3.5 | 3.5 | | 20,001 to 35,000 | 6.7 | 8.8 | 9.8 | 7.5 | 5.9 | 5.6 | | 35,001 to 50,000 | 7.0 | 9.2 | 11.0 | 11.2 | 8.9 | 6.9 | | 50,001 to 75,000 | 7.15 | 9.5 | 11.4 | 13.0 | 13.5 | 8.5 | TABLE 1C: Critical Dilution (Percent Effluent) Depth Difference between the Discharge Pipe and the Sea Floor Greater than 4 Meters to 6 Meters | D: 1 D | Pipe Diameter (inches) | | | | | | | |-----------------------------|------------------------|--------------|--------------|---------------|----------------|-------|--| | Discharge Rate
(bbl/day) | > 0" to < 5" | ≥ 5" to < 7" | ≥ 7" to < 9" | ≥ 9" to < 11" | ≥ 11" to < 15" | ≥ 15" | | | ≤ 500 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | | | 501 to 1,000 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | | | 1,001 to 2,000 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | | | 2,001 to 3,000 | 0.26 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | | | 3,001 to 4,000 | 0.37 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | | | 4,001 to 5,000 | 0.6 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | | | 5,001 to 7,500 | 1.14 | 0.8 | 0.7 | 0.7 | 0.7 | 0.7 | | | 7,501 to 10,000 | 1.8 | 1.1 | 0.9 | 0.9 | 0.9 | 0.9 | | | 10,001 to 15,000 | 3.5 | 2.0 | 1.4 | 1.3 | 1.3 | 1.3 | | | 15,001 to 20,000 | 4.3 | 3.1 | 2.1 | 1.7 | 1.7 | 1.7 | | | 20,001 to 35,000 | 4.6 | 6.2 | 4.8 | 3.6 | 2.8 | 2.7 | | | 35,001 to 50,000 | 4.8 | 6.5 | 7.2 | 5.7 | 4.6 | 3.6 | | | 50,001 to 75,000 | 4.9 | 6.6 | 8.2 | 8.8 | 7.3 | 4.8 | | TABLE 1D: Critical Dilution (Percent Effluent) Depth Difference between the Discharge Pipe and the Sea Floor Greater than 6 Meters to 9 Meters | 5.1 | Pipe Diameter (inches) | | | | | | |-----------------------------|------------------------|--------------|--------------|---------------|----------------|-------| | Discharge Rate
(bbl/day) | > 0" to < 5" | ≥ 5" to < 7" | ≥ 7" to < 9" | ≥ 9" to < 11" | ≥ 11" to < 15" | ≥ 15" | | ≤ 500 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | | 501 to 1,000 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | 1,001 to 2,000 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | 2,001 to 3,000 | 0.15 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | | 3,001 to 4,000 | 0.21 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | | 4,001 to 5,000 | 0.27 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | | 5,001 to 7,500 | 0.6 | 0.43 | 0.41 | 0.41 | 0.41 | 0.41 | | 7,501 to 10,000 | 0.9 | 0.62 | 0.53 | 0.53 | 0.53 | 0.55 | | 10,001 to 15,000 | 1.8 | 1.1 | 0.83 | 0.76 | 0.76 | 0.76 | | 15,001 to 20,000 | 2.8 | 1.6 | 1.2 | 1.0 | 1.0 | 1.0 | | 20,001 to 35,000 | 3.6 | 3.7 | 2.6 | 2.0 | 1.7 | 1.6 | | 35,001 to 50,000 | 3.7 | 5.0 | 4.3 | 3.3 | 2.6 | 2.2 | | 50,000 to 75,000 | 3.7 | 5.1 | 6.4 | 5.4 | 4.4 | 3.1 | TABLE 1E: Critical Dilution (Percent Effluent) Depth Difference between the Discharge Pipe and the Sea Floor Greater than 9 Meters | Discharge Rate | Pipe Diameter (inches) | | | | | | | |------------------|------------------------|--------------|--------------|---------------|----------------|-------|--| | (bbl/day) | > 0" to < 5" | ≥ 5" to < 7" | ≥ 7" to < 9" | ≥ 9" to < 11" | ≥ 11" to < 15" | ≥ 15" | | | ≤ 500 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | | | 501 to 1,000 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | | | 1,001 to 2,000 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | 0.09 | | | 2,001 to 3,000 | 0.11 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | | | 3,001 to 4,000 | 0.13 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | | | 4,001 to 5,000 | 0.15 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | | | 5,001 to 7,500 | 0.22 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | | | 7,501 to 10,000 | 0.42 | 0.32 | 0.3 | 0.3 | 0.3 | 0.3 | | | 10,001 to 15,000 | 0.8 | 0.53 | 0.44 | 0.42 | 0.42 | 0.42 | | | 15,001 to 20,000 | 1.3 | 0.8 | 0.62 | 0.54 | 0.54 | 0.54 | | | 20,001 to 35,000 | 2.7 | 1.8 | 1.3 | 1.0 | 0.9 | 0.9 | | | 35,001 to 50,000 | 2.7 | 3.0 | 2.2 | 1.7 | 1.4 | 1.2 | | | 50,001 to 75,000 | 2.8 | 3.9 | 3.7 | 3.0 | 2.4 | 1.7 | | TABLE 2: Minimum Vertical Port Separation Distance to Avoid Interference | Port Flow Rate
(bbl/day) | Minimum Separation Distance (m) | |-----------------------------|---------------------------------| | 0 - 500 | 2.2 | | 501 - 1000 | 2.7 | | 1001 - 2000 | 4.7 | | 2001 - 5000 | 4.8 | | 5001 and Greater | 6.6 | TABLE 3: Critical Dilution (Percent Effluent) for Toxicity Limitations for Scawater and Freshwater to which Treatment Chemicals Have Been Added | Depth Difference
(meters) | Discharge Rate
(bbl/day) | Pipe Diameter (inches) | | | | |------------------------------|-----------------------------|------------------------|-----------|-----------|------| | | | >0" to 2" | >2" to 4" | >4" to 6" | >6" | | 0 to 3 | 0 to 1000 | 11.4 | 5.1 | 5.1 | 6.3 | | | 1001 to 10, 000 | 38 | 53 | 62 | 67 | | | Greater than 10,000 | 49 | 66 | 74 | 77 | | >3 to 5 | 0 to 1000 | 4.0 | 4.8 | 6.6 | 6.2 | | | 1001 to 10, 000 | 16.1 | 25 | 30 | 23 | | | Greater than 10,000 | 23.6 | 33.3 | 39 | 49 | | >5 to 7 | 0 to 1000 | 4.0 | 4.8 | 5.6 | 6.2 | | | 1001 to 10, 000 | 12.8 | 21 | 18.1 | 18.8 | | | Greater than 10,000 | 16.7 | 25.4 | 31.2 | 34.4 | | Greater than 7 | 0 to 1000 | 4.0 | 4.8 | 5.6 | 6.2 | | | 1001 to 10, 000 | 9.8 | 16.3 | 18.1 | 18.8 | | | Greater than 10,000 | 12.4 | 18.8 | 25.2 | 26.3 |